12 第1页 | 共2 页下一页
返回列表 发新帖
查看: 1963|回复: 11
打印 上一主题 下一主题

[其它] Connectivity Editing for Quadrilateral Meshes

[复制链接]

1023

主题

3

听众

359

积分

设计实习生

Rank: 2

纳金币
335582
精华
0

最佳新人

跳转到指定楼层
楼主
发表于 2011-12-28 08:38:30 |只看该作者 |倒序浏览
Connectivity Editing for Quadrilateral Meshes

Chi-Han Peng Eugene Zhang†  Yoshihiro Kobayashi   ‡ Peter Wonka§

Arizona State University Oregon State University Arizona State University Arizona State University /





Abstract

We propose new connectivity editing operations for quadrilateral

meshes with the unique ability to explicitly control the location,

orientation, type, and number of the irregular vertices (valence not

equal to four) in the mesh while preserving sharp edges. We provide

theoretical analysis on what editing operations are possible and im-

possible and introduce three fundamental operations to move and

re-orient a pair of irregular vertices. We argue that our editing op-

erations are fundamental, because they only change the quad mesh

in the smallest possible region and involve the fewest irregular ver-

tices (i.e., two). The irregular vertex movement operations are sup-

plemented by operations for the splitting, merging, canceling, and

aligning of irregular vertices. We explain how the proposed high-

level operations are realized through graph-level editing operations

such as quad collapses, edge flips, and edge splits. The utility of

these mesh editing operations are demonstrated by improving the

connectivity of quad meshes generated from state-of-art quadran-

gulation techniques.

Keywords: quadrilateral mesh editing, irregular vertex editing,

mesh optimization, mesh-based design, topology, geometry pro-

cessing



1 Introduction

Quadrilateral and hexahedral meshes are popular choices in simula-

tion and shape modeling due to the natural tensor product property

that they possess. Quadrilateral meshes can also facilitate architec-

tural modeling as well as texture and geometry synthesis. Impor-

tant aspects of a quadrilateral mesh include the location, orienta-

tion, type, and number of irregular vertices. While there has been

some work in quad mesh connectivity editing [Daniels et al. 2008;

Bommes et al. 2011], achieving irregular vertex control is challeng-

ing and many questions about what editing operations are possible

and impossible still need to be answered.

In this paper, we propose three operations that move an irregular

vertex pair (two valence 3, two valence 5, or one valence 3 and

one valence 5) over the mesh. To show that these are fundamental

operations for quad mesh editing, we will establish the following

properties:

 These editing operations impact the smallest possible region

on the mesh and are therefore as local as possible (in a convex

region).

 A region containing only one irregular vertex cannot be

edited.

 A region containing two irregular vertices can be edited by

changing the location of the irregular vertices within the re-

gion. However, they cannot be canceled. Some irregular ver-

tex pairs can be merged while others cannot, depending on

their graph distance in the initial configuration.

 A region with three irregular vertices can be edited by cancel-

ing or merging the irregular vertices.

 Our three movement operations can perform all possible edits

within a (convex) region that contains two irregular vertices.









全文请下载附件:
分享到: QQ好友和群QQ好友和群 腾讯微博腾讯微博 腾讯朋友腾讯朋友 微信微信
转播转播0 分享淘帖0 收藏收藏0 支持支持0 反对反对0
回复

使用道具 举报

462

主题

1

听众

31万

积分

首席设计师

Rank: 8Rank: 8

纳金币
2
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

沙发
发表于 2012-2-24 23:19:00 |只看该作者
心中有爱,爱咋咋地
回复

使用道具 举报

   

671

主题

1

听众

3247

积分

中级设计师

Rank: 5Rank: 5

纳金币
324742
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

板凳
发表于 2012-3-17 23:21:21 |只看该作者
这么后现代
回复

使用道具 举报

462

主题

1

听众

31万

积分

首席设计师

Rank: 8Rank: 8

纳金币
2
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

地板
发表于 2012-3-26 23:32:59 |只看该作者
凡系斑竹滴话要听;凡系朋友滴帖要顶!
回复

使用道具 举报

462

主题

1

听众

31万

积分

首席设计师

Rank: 8Rank: 8

纳金币
2
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

5#
发表于 2012-4-19 23:27:11 |只看该作者
凡系斑竹滴话要听;凡系朋友滴帖要顶
回复

使用道具 举报

5969

主题

1

听众

39万

积分

首席设计师

Rank: 8Rank: 8

纳金币
-1
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

6#
发表于 2012-5-5 23:20:32 |只看该作者
我是老实人,我来也!
回复

使用道具 举报

tc    

5089

主题

1

听众

33万

积分

首席设计师

Rank: 8Rank: 8

纳金币
-1
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

7#
发表于 2012-5-19 23:19:09 |只看该作者
我是老实人,我来也!
回复

使用道具 举报

5969

主题

1

听众

39万

积分

首席设计师

Rank: 8Rank: 8

纳金币
-1
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

8#
发表于 2012-6-18 23:24:06 |只看该作者
呵呵,很好,方便罗。
回复

使用道具 举报

462

主题

1

听众

31万

积分

首席设计师

Rank: 8Rank: 8

纳金币
2
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

9#
发表于 2012-7-23 23:21:45 |只看该作者
既来之,则看之!
回复

使用道具 举报

5969

主题

1

听众

39万

积分

首席设计师

Rank: 8Rank: 8

纳金币
-1
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

10#
发表于 2012-8-8 01:37:32 |只看该作者
有意思!学习了!
回复

使用道具 举报

12 第1页 | 共2 页下一页
返回列表 发新帖
您需要登录后才可以回帖 登录 | 立即注册

手机版|纳金网 ( 闽ICP备2021016425号-2/3

GMT+8, 2025-7-21 14:16 , Processed in 0.093743 second(s), 29 queries .

Powered by Discuz!-创意设计 X2.5

© 2008-2019 Narkii Inc.

回顶部